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Estimating Blade Section Airloads from Blade Leading-Edge Pressure 
Measurements 

JOHANNES M. VAN AKEN 

AerospaceComputing , Inc. 
ArmytNASA Rotorcraft Division 

NASA Ames Research Center 
Moffett Field, California 

The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind 
(DNW) Tunnel acquired blade pressure data for forward flight test conditions of a 
tiltrotor in helicopter mode. Chordwise pressure data at seven radial locations were 
integrated to obtain the blade section normal force. The present investigation 
evaluates the use of linear regression analysis and of neural networks in estimating 
the blade section normal force coefficient from a limited number of blade leadigedge 
pressure measurements and representative operating conditions. These network 
models are subsequently used to estimate the airloads at intermediate radial locations 
where only blade pressure measurements at the 3.5% chordwise stations are available. 

Nomenclature 
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A 

C 

C,f 

C" 

CP 

CT 
M 

Mtip 

nn 

P 
r 

R 

U 

v 

speed of sound 

rotor disk area, nR2 

local blade chord 

blade reference chord 

blade section normal force coefficient, 
N/('I2pU2c) 

pressure coefficient, p/('I2pU2) 

rotor thrust coefficient, T/p(QR)'A (shaft axes) 

Mach number 

blade tip Mach number, QR/a 

neural network 

local blade pressure 

blade radial station (0 to R) 

blade radius 

local velocity 

free stream velocity; wind tunnel speed 
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a, ashaft 

p, mu advance ratio, VIQR 

P air density 

0 rotor solidity, Nc,J(nR) (0 = 0.105 for 

rotor shaft angle (positive aft) 

TRAM) 

q,az blade azimuth angle (zero azimuth is 

Q rotor rotational speed 

Introduction 

The tiltrotor aircraft configuration has the potential of 
revolutionizing the air transportation system by 
providing an economical combination of vertical take- 
off and landing capability with efficient high-speed 
cruise flight. To achieve this potential NASA has 
invested heavily in tilt rotor research, both 
experimentally (Refs. 1-2) and theoretically (Refs. 3-4). 

During recent wind tunnel testing of the Tilt-Rotor 
Aeroacoustic Model (TRAM), blade pressure 
measurements were acquired from some 150 pressure 
transducers, distributed over two of the three TRAM 
rotor blades. These blade pressures allowed for the 
computation of the blade section normal force 
coefficient at several radial stations. 

The present investigation evaluates the use of linear 
regression and of neural networks in estimating blade 
section airloads from blade leading edge pressures and 
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representative test conditions. The objective of the 
present study is three-fold: a) evaluate the ability of 
regression and neural network models to estimate blade 
section airloads from leading edge pressure data; b) 
evaluate the ability of such models to estimate the 
airloads at a radial location where bad pressure 
transducer(s) prevented the computation of c, from 
detailed chordwise pressure data; and c) evaluate these 
models in estimating the airloads at those radial stations 
where only pressure data at the 3.5% chord-wise station 
were available. 

Previous Work 

Other researchers (Refs. 5-8) have reported on using 
leading edge pressure measurements to estimate blade 
section airloads. 

References 5-7 describe a technique used at Royal 
Aerospace Establishment (RAE) of using a pressure 
sensor near the leading edge of the rotor blade to 
determine the incidence, a ,  and local aerodynamic 
loading, c,, using a comprehensive look-up table 
compiled from two-dimensional airfoil characteristics 
with suitable allowance made for the various unsteady 
effects. The pressure instrumented blade described in 
Ref. 6 had an array of 20 leading edge and 20 trailing 
edge pressure sensors. The leading edge sensors are 
located at 2% chord in the upper blade surface and their 
position was chosen to minimize structural weakening 
of the blade resulting from the small depression in the 
blade spar necessary to accommodate the transducer into 
the profile. Reference 5 states that leading edge 
locations in the range from 0 to 3% chord would in 
general be suitable for use in the described technique. 
The trailing edge sensors are used to indicate the 
presence of stall (Ref. 5). The "stall indicator" sensors 
were externally mounted at 98% chord and were locally 
blended into the surface by a fairing, which should had 
minimal effect on the flow in this region. 

Reference 8 discusses the deduction of the local airload, 
c,, from the pressure data obtained from a few stations 
near the leading edge for the Higher-Harmonics Control 
Aeroacoustic Rotor Test (HART). One blade of the 
BO-105 model rotor was equipped with 124 pressure 
sensors. Three radial sections (0.75R, 0.87R, and 
0.97R) were fully instrumented with 24 or 44 sensors. 
Sensors were located in the upper and lower blade 
surface at the 3% chord location at six radial locations 
(0.6R, 0.7R, 0.8R, 0.9R, O.94R and 0.99R). Data 
from the fully instrumented sections were used to 
correlate the section airloads, c,, to the c,-data at the 3% 
chord location assuming a linear transfer function of the 
form c,=a*X+b. Reference 8 looked at using only upper 

surface pressure, X=C,.~~~.. using the difference between 
upper and lower pressure, X=Ac,, and using upper and 
lower pressures as separate inputs to the transfer 
function (i.e., c,=a,*c,,,,,+a,*c,,,,,+b). The pressure 
difference at 3% chord at the O.62R location were used 
to estimate the local airloads using the transfer function 
obtained from the data for the 0.75R station. Reference 
8 states that it would be preferable to use the data from 
a more downstream station than at 3% chord. In fact, i t  
uses the transfer function determined from 9% chord data 
at the fully instrumented sections for the airloads 
computation from pressure data in a noise prediction 
code, called CONGA (Computation of Noise using 
Gauges Aerodynamics). 

TRAM Physical Description 

The TRAM was designed as a 1/4-scale V-22 tiltrotor 
aircraft model. The rotor has a diameter of 9.5 ft. 
Details of the TRAM physical description can be found 
in Ref. 1. 

The rotor blades and hub are designed as geometrically 
and dynamically scaled models of the V-22 blades. The 
hub is gimbaled with a constant velocity joint 
consisting of a spherical bearing and elastomeric torque 
links. The balance and flex-coupling measure forces and 
torque. The blade set has both strain-gauged and 
pressure-instrumented blades. There are 150 pressure 
transducers distributed over two blades: primarily at 
radial stations 0.50, 0.62, 0.82, and 0.96 on blade #1, 
and at radial stations 0.33, 0.72, 0.90, and 0.98 on 
blade #2 (see Table 1). At seven intermediate radial 
locations (r/R=0.93, 0.87. 0.77, 0.67, 0.56, and 0.42) 
pressure measurements were acquired only at the 3.5% 
chord-wise station. The pressure measurements can be 
integrated chordwise to obtain blade section normal 
force at seven primary radial stations (insufficient 
chordwise points are available at the 0.98 station). 
Reference 2 describes the data reduction process for the 
blade pressures and section normal force. The third 
blade carries all of the required safety of flight strain 
gauge instrumentation. 

Because of instrumentation problems not all pressure 
transducers were functional at all times. At the start of 
the test, 135 of the pressure gauges were operational 
(see Table 1). For some test conditions, bad pressure 
transducer signals resulted in the inability to compute 
the blade section normal force coefficient at all seven 
radial stations. 
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Numbers 1 and 2 indicate that the pressure transducer is on blade 1 or blade 2, respectively. 

Shaded numbers indicate that the pressure transducer is non-operational at start of test. 

Table 1 Blade pressure instrumentation 

- ~~~ ~ ~ ~~~ 

Chordwise position of pressure measurements, % chord, on upper (U) and lower (L) blade 
surface 

2 . 0  3 . 5  6 . 5  10.5 15 .0  21 .0  3 0 . 0  37 .5  45 .0  52 .5  65 .0  90.0 

r/R U L U L U L U L U L U L U L U L U L U L U L U L  
0.98 4 2  2 2  2 2  2 2  

0.96 I 1 1 1 I 1 1 1 1 1 1 1  1 

2 2  

1 1 1  1 1 1  

0.93 2 2  

0.90 2 2 2 2 2 2 2 2  2 2 2  

1 

2 2  I 2 2 2 2  

0.87 2 2  
0.82 1 1 1 1 1 1 1 1 1  1 1 1  1 1  1 1 1 1  

2 2  

0.77 2 2  
0.72 2 2 2 2 2 2 2 2 2  2 2 2 2  2 2 2 2  I 
0.67 2 2  

0.62 1 1 1  1 1  1 1  1 1  1 I 1 1 1 1  

Data Reduction 

The pressure measurements were sampled at 2048 per- 
rev. and data were collected for 64 revolutions. The 
pressure data in this report are a single revolution of 
data obtained by averaging over the 64 revolutions 
collected. To eliminate high frequency noise, a fast 
Fourier transform (FFT) is performed on the single 
revolution of airloads data and only the first 64 
harmonics are maintained; an inverse FFT is performed 
to reconstruct the time history of 128 points in a 
revolution (reduced from 1024 harmonics representing 
2048 samples). All the blade-vortex interaction events 

in the section normal force data are captured using 64 
harmonics. 

The measured balance loads of the TRAM in the DNW 
are corrected for model weight tares, aerodynamic tares, 
and for the influence of the wind tunnel walls. Details 
can be found in Ref. 3. These corrections remove the 
effects of gravity and spinner from the measured 
performance data. 

The data reduction process for the pressure and airloads 
measurements is described in Ref. 2. The pressure 
coefficient is obtained from the pressure by dividing by 
the local section dynamic pressure: cp = p/('/,pu2), 
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where U is the local blade velocity obtain by combining 
free stream velocity and blade rotational velocity. The 
section normal force coefficient, c, = N/('/,pUZc) is 
obtained by integrating the pressure coefficients. 

Test Conditions 

Reference 3 reports that pressure data were acquired for 
463 points consisting of 29 static points, 330 
helicopter mode points, 37 airplane mode points, and 67 
hover mode points. Reference 3 discusses the pressure 
instrumentation problems and how it affects the 
availability of obtaining section airloads from the 
chordwise pressure data at the seven radial locations. 

Pressure data were acquired at advance ratios of 0.125, 
0.15,0.175, and 0.20; and at C,/o of 0.089, 0.108, and 
0.128 (some limited data acquired at 0.098 and 0.118). 
Multiple repeat points were acquired at each test 
condition. Some 98 different test conditions were 
identified and the availability of leading edge pressure 
data and section airloads was examined. Essentially, as 
the DNW test progressed, instrumentation problems 
prevented the determination of section airloads at several 
stations. Also blade leading edge transducers on either 
the upper or lower blade surface might have been non- 
operational for later test points. 

1 

0 5  

c 
0 

0 

-0.5 I I 

1 . 2 ,  I 

1 1  

0 8  

0 6  

0 4  

0 2  

0 

0' 

-0.2 L I 
0 90 180 270 360 

azimuth. deg 

Fig. 1. Measured TRAM helicopter mode 
airloads for p = 0.15 at radial station r = 
0 .90R.  

Twelve test conditions were selected for this initial 
evaluation of the ability of linear regression models and 
neural networks to estimate the blade section normal 2 

force coefficient from a limited set of blade pressure 

mode forward flight and were analyzed in detail in 

ratio p = V/QR = 0.15, rotor thrust C,/a = 0.089 and 

+lo" (aft). 

Sample blade section airloads measured in helicopter 

data. These twelve test conditions are for helicopter 1.5 

Ref. 4. The nominal operating conditions are advance o= 1 

0.128, and shaft angle of attack from -10" (forward) to 0.5 

0 

modeare presented in Figs. 1 and 2, which show C, as 1 6  

1 4  

1 2  

1 

0 8  

0 6  

Evaluation Database 0 4  

0 2  

function of azimuth at the r/R = 0.90 and = 0.62 radial 
stations, respectively. The measured airloads show 
significant blade-vortex interaction at the tip for all 

both positive and negative shaft angles. 
twelve conditions, at both high and low thrust, and at 0' 

0 90 180 270 360 
azimuth. deg 

The test conditions, the blade pressure data at the 
various chord-wise locations, and the blade section 
normal force coefficient data for seven radial stations, 
r/R, were combined into a single database upon which Fig. 2. Measured TRAM helicopter mode 
the h e a r  regression and neural network computations airloads for p = 0.15 at radial station r = 

0 .62R.  
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were performed. The airloads could not be determined at 
all seven radial stations for all twelve test conditions 
due to instrumentation problems with pressure 
transducers at various blade stations. Such 
instrumentation problems were corrected to the extent 
possible between test runs. Therefore different pressure 
transducers were non-operational for different test points 
acquired at different times during the wind tunnel test. 

Concatenating the data for the twelve test conditions 
results in 12*128=1536 samples for each measurement 
channel in the database. The database for this study 
contains 60 possible input channels (four test 
conditions, azimuth angle, and 45 blade leadiigedge 
pressures from fourteen radial location r/R and acquired 
at the 2.0%, 3.5%, or 6.5% chord-wise station) and 
seven possible output channels (c, at r/R=0.96, 0.90, 
0.82,0.72,0.62,0.50, and 0.33). 

v) 

V 
=-, 0.1 

0.05 

r 
0 
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. . . . . . . . . . .  oQ.2 . . . . . . . . . . .  

Figure 3 depicts the data base content for the airloads at 
r/R=O.90 and shows the c, data, the cp measurements at 
the 3.5% chord-wise location on the upper and lower 
blade surface,. the test conditions C,/o and shaft angle of 
attack, a ,  and the azimuth angle, y .  The additional test 
conditions, being advance ratio and tip Mach number at 
nominal values of 0.15 and 0.63, respectively, are 
essentially constant and are not plotted in Fig. 3. The 
vertical grid lines in Fig. 3 separate the twelve test 
points as can be clearly seen in the a and azimuth angle 

Figure 3 shows very similar trends in the airloads c, data 
and the leading-edge pressure data, cp on the blade upper 
surface. 

Figure 4 graphically shows the relationship between 
section airloads and the pressures measured at the 3.5% 
chordwise location on the upper and lower blade surfaces 
for three radial locations (O.90R, 0.72R, and 0.62R). A 
non-linear trend is seen between c, and c,, 

plots. 

*- 

-0.5 
-10 -5 0 5 

c -upper P 

. . . . . . . . . . .  . . . . . . . . . . .  
VQ21 ' " " " " " I 

Fig. 3. Airloads and blade leading-edge 
pressure measurements at 3.5% chord at 
radial location r/R=0.90 and test conditions. 

1 .5 .  

1 '  

uc 
0.5 

0 .  

-0.5 I 
-1 0 1 

c -lower 
P 

*7 

-0.5 
-10 -5 0 5 

Del!a-cp 

Fig. 4. cn versus cp plots for upper and 
lower blade pressure measurements for three 
radial locations 
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with the non-linearity being greater for the lower surface 
cp . Reduced non-linearity between c, and cp is seen for 
the more inboard locations. Also shown in Fig. 4 is c, 
as function of Delta_c,=c,,p,,-c,,,,,,, which shows a 
more linear trend, especially at the inboard locations. 

Mathematical Models 

The use of linear regression analysis and of neural 
network analysis was investigated to estimate the blade 
section airloads from blade leading edge pressures and 
representative test conditions. The regression and neural 
network models are discussed next. 

Linear Regression Model 

The general linear regression equation is: 
2 3 

c , ,~ ,~  = a, + Za,,i Xi +Za, j  Xi + Za,, Xi + ... (1) 

where c,,~,, is the estimated blade section normal force, 
x, are the regression input variables, 
and aj,i are the regression coefficients. 

The Xi-variables are: advance ratio p. shaft angle of 
attack aShafl, C,/o, tip Mach number, Mlip, and the blade 
leading-edge pressure measurements, c, at 2%, 3.5%, or 
6.5% chord on the upper and lower blade surfaces at the 
considered radial station, r R .  

The general linear regression Eq. (1) includes higher 
order terms. However, only higher order terms for 
c ~ , ~ ~ ~ ~ ~  and c ~ , , ~ ~ ~ ~  are considered in this investigation. 
The test condition parameters are constant for a 
particular test point and are only incorporated as linear 
terms in the regression model. 

Neural Network Model 

A two-layer neural network (nn) model as depicted in 
Fig. 5 was used in the present investigation to estimate 
the blade sectional normal force coefficient, c,, from 
measured leading edge pressure measurements and test 
condition parameters. A number of two-layer networks 
were studied varying in the number of inputs and in the 
number and type of hidden layer nodes. A Levenberg- 
Marquardt scheme is used to train the networks. 

Only multiple-inputs / single output (MISO) neural 
network models were considered for this investigation: a 
MISO-network for each radial location, r/R, for which 
the section normal force coefficient, c,, is to be 
estimated. 

The inputs to the neural network model consisted of the 
measured blade leading-edge pressure coefficient, c,, (at 
2%* 3.5%, or 6.5% chord) on the upper and lower blade 
surface, the azimuth angle, v, and the four test 
condition parameters, p, Mlip, ashaf,, and C,/o. The 

output of the network was the estimated airloads data, 
c,,~,,~, at the radial station, r/R. 

The number of nodes in the hidden layer was varied 
from 1 to 6 .  Tangent hyperbolic activation functions in 
the hidden layer were used without or with one linear 
activation function node. A linear transfer function and 
a tangent hyperbolic activation output function were 
considered for the output node. Initial work showed the 
linear transfer function in the output node to provide 
superior results and was therefore specified for the 
remainder of the investigation. 

Output layer 
n 

Input layer 

Fig. 5. Schematic of a two-layer neural 
network perceptron (multiple inputs / single 
output) 

MatlabB Toolbox 

A Toolbox of Matlab@ codes was developed by the 
author to perform the regression and nn-analyses using 
Matlab", version 5.2, running on a MacIntosh 
PowerBook G4 (800 MHz, OS 9.2). Various neural 
network functions from Ref. 9 were incorporated in the 
Toolbox. The Toolbox user specifies by means of a 
Graphical User Interface (GUI) the database to be loaded, 
the desired analysis method (regression or neural 
network), the multiple inputs and single output to the 
model, and the analysis model structure. For the 
regression model, a GUI-popup window allows the user 
to specify for each selected input the order to which the 
input should be represented in the model (see Eq. 1). 
For the nn-option, the user specifies the network 
architecture; Le. numbedtype of nodes in the 
hiddenloutput layer. 

It should be noted that if a pressure transducer for a 
particular test condition was non-operational, the 
corresponding c, values were set to NaN (Not-A- 
Number) in the TRAM DNW blade pressure database. 
Similarly, if insufficient pressure measurements along 
the chord were available at a test condition to compute 
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the section normal force coefficient at a radial station, 
all corresponding c,-values in the database for that test 
condition were set to zero. In performing the regression 
and neural network analysis for a particular r/R-location, 
these c,=NaN and c,=O data are identified. The Toolbox 
allows for the elimination of such test poincs in the 
loaded database when estimating the regression 
coefficients or neural network nodal weights (training 
cycle). Also, the Toolbox allows for the creation of a 
training data set and a separate test data set for 
evaluating the math model. 

The Toolbox also allows for the export and import of 
the neural network models (input/output selection, 
architecture and corresponding weight matrices) to allow 
for the evaluation of the networks in estimating airloads 
from different data subsets. 

The Toolbox allows for the export and import of the 
airloads data in tabular format and for the depiction of 
such data in graph form so as to compare the results of 
the various linear regression math models and various 
neural network models. 

The stopping criteria for training the neural network is 
either to achieve an error bound tolerance for two 
consecutive epochs of or to exceed 1000 training 
epochs. Typically the limit of 1000 epochs terminates 
the network training for networks containing more than 
3 to 4 nodes in the hidden layer. 

Analysis Approach 

The number and the type of inputs to the regression 
model of Eq. (1) and to a specific neural network 
architectural model (Fig. 5) are systematically varied to 
evaluate their contribution to accurately estimate the 
blade section normal force coefficient. 

The measured and estimated c, data graphically 
displayed by the Toolbox as are the residual error data 
given by C,-C,,~,~. Figure 6 presents an example of this 
graphical display, showing the measured versus 
estimated data in the top plot and the residual error data 
in the bottom plot. The estimated airloads in Fig. 6 
represent the results of a linear regression analysis 
model using only the blade upper surface c,-data at 3.5% 
chord to estimate the c,-data at r/R=0.90. As indicated 
by the x-axis label, the vertical dotted lines in Fig. 6 
separate the database subsets, i.e. the airloads over one 
azimuth sweep for each of the twelve considered test 
conditions. The measured and estimated airloads as well 
as the residual error data for subset seven (a=-lOO, 
cT/a=0.128) are presented in Fig. 7 to show more 
detail. Although the general trend of c, as a function of 
the azimuth angle is captured by the math model as 

shown in Fig. 7, the magnitude of the airloads estimate 
is fairly inaccurate. 

The Toolbox also allows for conversion of cp and c, to 
c,M2 and c,M2. respectively, where M is the local blade 
section Mach number obtained from 

M = [(Vsinv ~osa,~,~~+Qr)~+(Vsina,,,,)2]/a~ (2 )  

This Toolbox conversion option allows for the 
evaluation of the ability of the regression and neual 
network models to also estimate airloads in terms of 
c,M2 from blade pressure data expressed as cp or c,M2. 
Figure 8 shows an example of the measured and 
estimated c,M2 data at O.90R using a regression model 
with c,M2, measured at 3.5% chord on the blade upper 
surface as the sole input. Figure 9 shows the 
corresponding data from the seventh subset (a=- IO", 
cT/a=0.128). 

The standard deviation (S.D.) of the residual error data is 
shown in the upper-right comer in the residual error 
plots of Figs. 6 and 8. The standard deviation of the 
residual error data is used as a metric of the "goodness" 
of fit of the airloads prediction. This metric facilitates 
the comparison of the various regression and neural 
network models in their ability to accurately estimate 
the airloads. 

. '  I '  I '  I 1  1 1.2, , , , , , , 

. . . .  . . . .  
C 
0 

. . . . . .  , . . . . .  . . . . , .  . . , . , , , . . . . 
- 0 . 2 L ' " "  ' . ' "  

. . , . . , , , . . , , . , . , -o,3 . . , . I . . . , . . 
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

database subset 

Fig. 6. Sample plots of measured versus 
estimated airloads from regression model 
(input: cpJs) and of residual error plot (input 
 data at 3.5%~; r/R=0.90) 
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-0.06 

measured 
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0 90 180 270 36c 
azimuth, deg 

Fig. 7. Measured versus estimated 
airloadfrom regression model (input: cpJs) 
and residual error as function of azimuth 
angle for database subset #7 of figure 6 
(a=-loo, cT/a=0.128) 
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. . . . . . . .  . . . . . . . . .  ' $.D;=O.bl . . . . . . . . . . .  . . . . .  . . . . .  . . . . .  ...................... . . . . .  

. . .  . . .  
, . .  ( . .  

I 
1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

database subset 

Sample plots of measured versus 
estimated airloads from regression model 
(input: c,,,,M2) expressed as c,M2 and residual 
error (input:  data a t  3 . 5 % ~ ;  r/R=0.90) 

Regression model evaluation 

The upper and lower surface pressure measurements at 
the 3.5% chordwise stations in combination with the 
various test conditions and azimuth angle were used as 
inputs to various regression models to estimate the 
blade section normal force coefficient, c,. Figure 10 
shows the goodness of fit when assuming only linear 
terms in Eq. 1 and varying the inputs to the regression 
model. The standard deviation of the residual error in 
the airloads estimation, being the goodness of fit of the 
considered model, is shown along the x-axis in Fig. 10. 
The various inputs to the considered regression models 
are shown along the vertical axis of Fig. 10. 

Figure 10 shows that using only the upper surface 
cp, upper data provides better load estimations than using 
only the lower surface cp, data. This is especially 
true for the more inboard locations. Using both upper 
and lower surface pressure data improves the airloads 
estimation at all radial locations. Including the test 
conditions gives only minor improvements in the 
airloads estimation. 
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upperllower 

dl + mu 

u/l + ashaft 

u/l + cvs 

u/l + Mop 

dl + ashaft +cUs 

0 0.02 0.04 0.06 0.08 0.1 0.12 
Standard deviation of residual error 

Fig. 10. Goodness of fit for c, regression 
models with various inputs and assuming 
linear trends 

measured - 

0 

0.08 

-0.08 I I 
0 90 I so 270 360 

azimuth 

Fig. 11. Measured versus estimated airloads 
from regression model (input: c ~ , ~ ~ ~ ~ ~ ~ ~ ,  
c ~ , , ~ ~ ~ ~ , ~ . ~ ,  a ,  C,/a) expressed as c, and residual 
error as function of azimuth angle for 
database subset #7 (a=-loo, C,/a=0.128) 

Figure 7 shows a representative example (subset #7: 
a=-lOO, CT/u=0.128) of the airloads estimation for 
O.90R when only the upper surface pressure is an input 
to the regression model. The overall goodness of fit for 
this regression model is shown as the top bar (labeled 
'upper') in Fig. 10 for O.90R. Figure 11 shows the 
estimation for the same data subset #7, but for the 
regression model which has as inputs a ,  C,/U, and the 
upper and lower surface pressures at 3.5% chord. The 

overall results for this regression model are depicted in 
Fig. 10 as the bottom bar (labeled 'u/l + ashaft + ct/s') 
for 0.90R. The improvement seen in the airloads 
estimation when comparing Figs. 7 and 11 is mostly 
due to including the lower blade surface pressure as 
input to the regression model. 

Figure 4 shows a non-linear trend between airloads and 
blade leading edge pressures. Therefore, including 
higher order pressure terms in the regression model was 
investigated (see Fig. 12). The test conditions were 
maintained as first order terms only. Figure 12 shows 
that including second order pressure terms improves the 
load estimation essentially only when the upper surface 
pressure is the sole input to the regression model and its 
influence is reduced substantially for the more inboard 
radial locations. 
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Fig. 12. Goodness of fit for c, regression 
models, incorporating higher order terms for 
pressure data at three radial locations 

Regression analysis models in which cpM2-data are 
inputs and c,M2-data are the output were also evaluated. 
Figure 13 shows representative results at the O.90R 
radial location. Again the inclusion of the second order 
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pressure terms shows the largest effect if c ~ , ~ ~ ~ ~ ~  is the 
sole input to the model. The results show that the 
second order term's contribution to improving the 
accuracy of the c,MZ prediction diminishes for the more 
inboard locations. A comparison of Figs. 12a and 13 
shows that the influence of C,/U is much greater when 
estimating airloads in terms of c,M2 versus c, at the 
O.90R stations. For the 0.72R and O.62R stations 
minimal improvements in c,MZ estimation are seen 
from the inclusion of C,/u as an input. 

.. I I I 

uppertlower l 
ull + achaft 

UA + CWF 

u/l + dchafl +cWc 

0 0.005 0.01 0.015 0.02 
Standard deviation of residual error 

Fig. 13. Goodness of fit for c,M2 regression 
models for 0.90R, incorporating higher order 
terms for pressure data 

Figure 9 shows a representative sample of a regression 
model to estimate the airloads in the format c,M2 
(subset #7, a=-lOO, C~/U=0.128) when using only 
upper surface pressure, cPM2, as an input. Figure 14 
shows the same subset, but for the regression model, 
which has as inputs a ,  C,/o, and the upper and lower 
surface pressures, c,M2, at 3.5% chord. The overall 
goodness of fit for the database for these two regression 
models is shown in Fig. 13 as the 1" order models with 
y-axis labels of 'upper' and 'u/l + ashaft + ct/s', 
respectively. Most of the improvement in the airloads 
estimation between Figs. 9 and 14 is due to the 
inclusion of the lower surface pressure as an input to 
the regression model. 

Neural network model evaluation 

Figures 15 through 17 summarize the results of varying 
the inputs to various neural network models in 
estimating the airloads, c,, at radial locations 0.90R, 
0.72R, and 0.62R, respectively. The evaluation metric, 
the standard deviation of the residual error, is shown 
along the x-axis in Figs. 15-17. The model input 
description is provided in the y-axis of the subplots of 

15-17. Seven input scenarios are considered as 
shown along the y-axis. The model inputs are the 
"PPer (U) or lower (I) blade pressure measurements at 
3.5%-chordwise station as single inputs and as 
combined inputs, as well as these two pressure 
meaS"rements in combination with the test parameters 
Of shaft angle of attack (ashaft) and thrust level (ct/s). 
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Fig. 14. Measured versus estimated airloads 

c ~ , , ~ ~ ~ ~ ~ . ~ ~ M ~ ,  a, C,,b)  expressed as c,M2 and 
residual error as function of azimuth angle 
for database subset #7 (a=-lOO, C,/a=0.128) 

from regression model (input: c ~ , ~ ~ ~ ~ ~ ~ ~ M  2 , 

The azimuth angle (labekaz) is also considered as an 
input. The five input case consists of upper and lower 
blade pressures and a,  C,/u, and q ~ .  The upper and 
lower blade pressure measurements were considered as 
individual inputs as both pressures were not always 
available for each test points at all radial locations (see 
Table 1). Advance ratio and tip Mach number were also 
considered as inputs. However, since these test 
parameters varied only slightly for the twelve considered 
test cases, inclusion of these parameters as nn-input 
showed negligible effect on the accuracy of the airloads 
estimation. 

The neural network model's architecture is defined in the 
legend of each subplot of Figs. 15-17. The following 
nomenclature is used to identify these networks. The 
letter 'L' is used to identify a linear node in the hidden 
layer, whereas 'H' is used to identify a tangent 
hyperbolic activation function for a node in the hidden 
layer. The number 'i' in 'LHi' or 'Hi' identifies the 
number of such H-functions in the hidden layer. Only 
one linear node is considered for the hidden layer. The 
output layer has a linear activation function. Thus the 
LH4 network contains one linear node and four nodes 
with tangent hyperbolic activation functions in the 
hidden layer and has a linear output node. Twelve such 
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Fig. 17. Goodness of fit for neural network 
models in estimating airloads c, a t  radial 
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Fig. 15. Goodness of fit for neural network 
models in estimating airloads c, a t  radial 
station 0.90R using various inpu t s  
(pressures a t  3.5% chord) 
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of airloads c, for considered test points for 
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Standard deviation of residual error 

neural network configurations were considered having 
from 1 to 6 nodes in the hidden layer and containing one 
or no linear activation function in the hidden layer (see 
Figs. 15-17). 

linear node in the hidden layer and a linear output node 
will essentially provide the linear regression model 
results in which all inputs are represented as linear 

from the weights obtained in this 'L' neural network 
model. 

It should be noted that a neural network having just one I 

I 
terms only. The regression coefficients can be derived 1 

I 
i 
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Fig. 16. Goodness of fit for LHi neural  
network models in estimating airloads c, a t  
radial station 0.72R using various i n p u t s  
(pressures a t  3.5% chord) 
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When comparing the goodness of fit metric from 
airloads estimations at different radial stations it needs 
to be kept in mind that the magnitude of the mean and 
the range of airloads changes with the radial location. 
The range of the airloads, defined as maximum - 
minimum, for each test point was determined and the 
mean of these ranges as well as the maximum range are 
shown in Fig. 18. Note that both the mean and 
maximum range increases as r/R decreases. 

Figure 15 shows that for a specific neural network 
model architecture (L, LH, etc), using only the upper 
surface blade pressure gives better airloads estimates as 
compared to using only the lower surface blade pressure 
which was expected from the trends observed in Figs. 3 
and 4 and from the linear regression results. The 
estimation of the airloads from the lower blade surface 
pressure becomes less accurate as a more inboard radial 
location is considered (Figs. 16-17). Improvement in 
the airloads estimation is seen when both upper and 
lower blade surface pressures are used, although this 
improvement over the upper-surface pressure-only case 
is minimal for the O.62R radial location (Fig. 17). 

Inclusion of test conditions a and C,/U as model input 
parameters tends to improve the airloads estimation of 
the nn-models with more than two-three nodes. 

Note the improvement that is seen in Figs. 15-17 in 
the nn-models by including the azimuth angle (az) as an 
input parameter. This improvement with be discussed 
in more detail when describing the airloads estimation 
results in terms of c,M2. 

For a given input set, increasing the number of nodes in 
the neural network's hidden layer tends to improve the 
airload estimation accuracy (Figs 15-17). The initial 
improvement when going from a one node 'L' network 
to a two node 'LH' network is substantial for the O.90R 
station (Fig. 15) when only the upper or the lower cp 
pressure is an input to the network. Substantial 
improvements for all three radial locations are also seen 
for the five-input cases when adding nodes to the hidden 
layer (Figs 15-17). 

Figures 15-17 show that a one-node 'H' network 
Performs better than a one-node 'L' network. However, 
as more nodes are added, the LHi and Hi networks tend 
to Perform equally well in estimating the airloads, c,. 

FiWes 19 through 21 show the analysis results using 
the Same neural network model architectures, but using 
" the upper and lower blade pressure 
measurements at 3.5%-chordwise station in the form of 
'p"' and the output parameter being c,M2. Figure 22 
shOwS the mean and the maximum of the ranges of the 

c,M2 airloads. Note that both the mean and maximum 
values decrease as r/R decreases. 

Similar observations can be made for the c,M2 goodness 
fit  in Figs. 19-21 as previously made for the c,-airloads 
estimation (Figs. 15-17): adding nn-nodes for a specific 
input set tends to improve the estimation; a substantial 
improvement is seen when going from a L to an LH 
model, especially at the O.90R station; the additional 
input of a or C,/o improves the fit; using upper and 
lower surface pressure inputs provides better estimations 
as compared to inputting only the upper or lower 
surface pressure; and upper surface pressure only 
provides better estimates as compared to lower surface 
pressure only, especially at the inboard radial stations. 
At O.90R the addition of C,/a in Fig. 19 shows 
substantial improvements in the c,M2 estimation, 
which were not observed in Fig. 15 in estimating c,. 
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models in estimating airloads c,M2 at radial 
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models in estimating airloads c,M* at radial 
station 0.62R using various inputs 
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Fig. 22. Mean of ranges and maximum range 
of airloads c, for considered test points for 
seven radial locations 

Azimuth angle effect 

The estimation of the airloads in terms of c, (Figs. 15- 
17) or c,M2 (Figs. 19-21) is improved by the input of 
azimuth angle to the neural network models. The 
influence of the azimuth angle input on the estimation 
accuracy of the airloads c,M2 is illustrated in Fig. 2 1 ,  
which shows the results of the LH3 neural network at 
the O.90R radial station using as inputs a ,  C,/a, and 
c,-data on the upper and lower blade surface at the 3.5% 
chordwise station. Shown in Fig. 23 is the data subset 
for a=-10" and Cdo=0.128. Reference 7 states that in 
attached flow, c, leads the cp2% data and describes a 
correction method 

where in hovering flight the time constant, T,, 
represents 10" at O.5R and 5" at the tip. Providing the 
azimuth angle information to the neural network model 
results in the airloads estimation curve to move to the 
left in Fig. 23; i.e., it corrects for the c, leading cP. 
This azimuth correction is seen at all radial locations. 
This correction is also seen when inputting only the 
upper or the lower blade surface pressure to the nn- 
model. 

Although the azimuth does improve the nn-model 
airloads estimation, ,a problem was identified with this 
input in that the estimated airloads trace at 0" and 360" 
azimuth did not always line up correctly. This 
phenomenon is barely noticeable in Fig. 23 in the 
residual error plot. Presently the azimuth input is the 
saw-tooth trace seen in Fig. 3. Limited work was 
performed with an alternate azimuth input (sin(q), 
cos(v)) in an attempt to alleviate this phenomenon, but 
no consistent results were obttined. Future work will 
examine the substitution of a c,-type input for azimuth 
on the neural network's airloads estimation accuracy. 
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Fig. 23. Measured versus estimated airloads 
(LH3-nn-model; without and with azimuth 
angle as input) and residual error as funct ion 
of azimuth angle for database subset #7 (a=- 

azimuth, deg 

10'7 CT/a=O -128) 

c, versus c,M2 Airloads Estimation 

Airloads estimation in the form of c, and c,M2 were 
obtained from various neural network models using as 
inputs cp and c,M2 at 3.5% chord, respectively. The 
estimated c,-data form the LH3-model were converted to 
c,M2 and compared to measured c,M2-data and the 
estimated c,M2 obtained from the LH3-model using 
cP2-data as input and measured c,M2-data as output. 
Additional nn-inputs are a and C,/a, while azimuth is 
an option input. Figures 24 and 25 compare the 
measured c,M2 airloads for O.90R at a=-10" and 
CT/a=0.128 with the directly estimated c,M2 airloads 
and after conversion of the estimated c,-airloads to the 
c,M2-format. Figure 24 presents nn-results without 
azimuth input, whereas the results of Fig. 25 are for the 
nn-model, which has azimuth as an input. Figure 24 
shows that largest difference in the c,M2-estimates 
occur for azimuth angles from 100" to 220". In this 
region more accurate results are obtained from a nn- 
model, which computes c,M2 directly as compared to a 
nn-model, which estimates c, first. Figure 25 shows 
that the differences in airloads estimates from the two 
nn-models become small when azimuth is an nn-input. 
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Fig. 25. Measured versus estimated airloads 
c,MZ (LH3-nn-model with azimuth angle 
input) and residual error as function o f  
azimuth angle for database-subset  #7 
(0.90R, a=- 1 O o ,  C,/a=O. 128)  
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Review of the airloads traces for the twelve test 
conditions and for the various radial locations shows 
c,M2 being more accurately estimated from training a 
nn-model against c,M’ as compared to training the M- 

model against c, for r/R=O.90, 0.82, and 0.72; the 
reverse is true for r/R=O.62. AS seen in Figs. 24 and 
25, the differences tend to be small, especially if 
azimuth is an nn-input. 

Influence of Leading Edge Pressure 
Transducer Location 

Initial work in estimating the blade section airloads used 
the 3.5% chordwise station pressures since this is the 
only station at which pressure transducers were installed 
at the intermediate radial locations (r/R=0.98, 0.93, 
0.87, 0.77, 0.67, 0.56, and 0.42; see Table 1). 
However, for the seven radial stations where detailed 
chordwise pressures are available, the pressure data from 
a different chordwise station can be selected as an M- 

input. This might be a necessity if the 3.5% pressure 
transducer was non-operational. Figure 26 shows the 
effect of selecting pressures from different chordwise 
stations (2.0%, 3.5%, or 6.5% chord) as input to the 
network on the goodness of fit in estimating the 
airloads c,M2 at seven radial locations, which are 
identified in the y-axis label. The shaft angle, a ,  and 
thrust, C,/a, are nn-inputs as well. Only the upper 
surface c,M2 data were used as input since the 
corresponding lower surface c$vl*-data were unavailable 
in quite a few cases. Figure 26 shows the results of the 
LHi-neural network models, which are identified along 
the y-axis in each subplot. Results for the Hi-nn- 
models are similar, except that the H and H2 networks 
tend to provide better results than the L and LH 
networks. 

Figure 26 shows that increasing the number of nodes in 
the neural network tends to improve the airloads 
estimation. At the 0.96R location, the 2.0% chordwise 
pressure provides improved airloads estimation as 
compared to more aft located pressure data; this is 
especially true for three or more nodes in hidden layer of 
the network model. For the 0.82R location the 2.0% 
pressure data provides less accurate airloads estimates as 
compared to the 3.5% and 6.5% chordwise pressure data 
and the 2.0% model-estimate accuracy decreases greatly 
for the more radial inboard stations. 

Figure 26 shows slightly better estimates using the 
3.5% chordwise pressure as compared to the 6.5% 
chordwise pressures for radial locations r/R=0.82, 0.72, 
and 0.50. The 6.5%-model is more accurate at 
r/R=0.62. Except for the most outboard radial stations, 
the 3S%-chordwise station is an appropriate location 

for obtaining upper-surface leading-edge pressures from 
which blade section airloads can be estimated. 
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Fig. 26. Goodness of fit for various LHi 
neural network models in estimating airloads 
c,MZ at seven radial stations (inputs: upper 
surface pressures at 2%, 3.5%, or 6.5% 
chordwise station, a, and C,/a) 
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Figure 27 shows the goodness of fit results for radial measured and estimated airloads for a=-IO" at 
locations 0.90R and 0.62R for neural networks with C,/o=0.089 and Cdo=0.128, respectively. The airloads 
both upper and lower surface pressures as inputs. are estimated to within anticipated accuracy at both 
Figure 27 shows again that the 2.O%-chordwise C,/o levels. Note that the airloads traces for the nn- 
pressures provide more accurate results as compared to models with azimuth input do not line up at the 0" and 
the 3.5%-c pressures at 0.96R. The 6.5%-chordwise 360" in the residual error plots of Figs. 28 and 29. 
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pressures provide the most accurate results at 0.62R, 
while the 2 . 0 % ~  and 3 . 5 % ~  pressure provide similar 
goodness of fit results. Comparison of the 
corresponding subplots of Figs. 26 and 27 shows again 
that considerable improvement in the airloads 
estimation can be obtained if both the upper and lower 
surface pressures are input to the neural network model. 
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Fig. 27. Goodness of fit for various LHi 
neural network models in estimating airloads 
c,M2 at two radial stations (inputs: 
upper/lower surface pressures at 2%, 3.5 9% , 
or 6.5% chordwise station, a, and C,/a) 

Airload Estimation for Test Conditions Not 
Part of Training Database 

The above discussion shows that neural networks with 
three or more nodes in the hidden layer do an adequate 
job in estimating the airloads from leading edge 
pressures for the training database. Such neural 
networks might be used to estimate the airloads for 
those test conditions where insufficient chordwise 
Pressure data in the TRAM DNW-pressure database 
Prevented the integration of pressures into the blade 
section airloads. To evaluate this ability, the a=-lOO 
test points were removed from the training data base for 
the 0.90R radial station and a LH3 neural network 
(inputs: a, C,/a, and c,M2 at 3.5% chord, without and 
with azimuth) was trained against c,M2 from the 
remaining ten test conditions. The resulting two nn- 
models were subsequently used to estimate the airloads 
for the a=-IO" cases. Figures 28 and 29 show 

- 
The ability of a LH3-model to estimate airloads for test 
points that are not part of the training database for the 
0.62R radial station is shown in Figs. 30 and 31 for 
subsets 3 (a=-2", C,/o=0.089) and 10 (a=+2", 
CJo=O. 128), respectively. Figures 30a and 3 1 a show 
the measured and estimated airloads when these two test 
points are part of the training database, whereas Figs. 
30b and 31b show the estimates when these test points 
are not part of the training database. Comparison of the 
airloads estimates in Figs. 30a and 30b and in Figs. 31a 
and 3 lb for the O.62R station and of Figs. 23 and 29 for 
the O.90R station shows that the nn-models can be used 
successfully to estimate airloads for test conditions that 
were not part of the training database. 

Fig. 28. Measured versus estimated airloads 
(LH3-nn-model; without and with azimuth 
angle as input) and residual error as function 
of azimuth angle for database subset # 1  
(0.90R, a=-loo, c,/o=0.089); subsets #1 and 
#7 removed from training database 
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Fig. 29. Measured versus estimated airloads 
(LH3-nn-model; without and with azimuth 
angle as input) and residual error as funct ion 
of azimuth angle for database subset # 7  
(0.90R, a = - 1 O 0 ,  c,/a=0.128); subsets #1 and 
#7 removed from training database 
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Fig. 30. Measured versus estimated airloads 
(LH3-nn-model; without and with azimuth 
angle as input) and residual error as function 
of azimuth angle for database subset #/3 
(0.62R, a=-2O, c,/a=0.089) 
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were used to estimate the airloads at an adjacent radial 
location, for which the airloads were known as well. 
Note that the radial distance between stations in this 
case is of the order of 0.1R. For the intermediate radial 
stations this distance would be O.05R. NN-model 
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Airloads Estimation at Intermediate Radial 
Locations 

The evaluation of the regression and neural network 
models thus far has been restricted to the estimation of 
airloads from leading edge pressure data at the radial 
stations where, in general, detailed chordwise pressure 
data were available (r/R=O.96, 0.90, 0.82, 0.72, 0.62, 
0.50, and 0.33). Such models might also be used to 
estimate the loading at intermediate radial locations 
(r/R=0.96, 0.90, 0.82, 0.72, 0.62, 030, and 0.33), 
where only 3.5% chordwise pressure data are available. 
is. Given that neural network models with three or 
more nodes in the hidden layer performed better then 
regression models, the discussion here is limited to a 
LH3-nn-model . 

The LH3-neural networks, trained against the c,M2 data 
from radial stations r/R=0.96, 0.90, 0.82, 0.72, 0.62, 
0.50, and 0.33 were used to estimate the airloads at the 
adjacent stations using the 3.5% chordwise station's 
pressure data. Whenever possible the pressure data from 
the upper and lower blade surfaces were input to the 
neural network model. Input changes were made as 
necessary. For instance, no lower surface pressures 
were available at r/R=O.50 (see Table 1). Therefore, the 
O.5OR-nn-model only used the upper surface pressure as 
input and this model was subsequently used to estimate 
the airloads at r/R= 0.56 and 0.42, using only the upper 
surface pressure from these stations, even though upper 
and lower cpM2 data were available at these two radial 
locations. 

For the initial evaluation of the ability of neural 
network models trained for one radial station to estimate 
airloads at adjacent radial stations, the LH3-nn-models 
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inputs are a, C,/a, and c,M2 at 3.5% chord at the radial 
location of interest. Models without and with azimuth 
input were evaluated. Airloads estimates for data subset 
#3 (a=-2', cT/a=0.089) are shown as representative of 

b: subset is not part of training set estimated airloads using the nn-models, trained against 
the 0.96R- and 0.82R-data. The 0.82R-model's 
estimates show good agreement with the measured 
airloads. The 0.96R-model with azimuth input shows 
the correct trends, but the estimate is vertically offset 
from the measured loading. 

Fig. 31. Measured versus estimated airloads 
(LH3-nn-model; without and with azimuth 
angle as input) and residual error as function 
Of azimuth angle for database subset #10  
(O*62R, ff=+2', cT/a=0.128) 
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Similar evaluations were done for 0.82R, using the 
0.72R and O.9OR-nn-models (Fig. 33) and for 0.72R, 
using the O.62R and 0.82R models (Fig. 34). Figure 
33 shows that the O.9OR-nn-models are performing well 
in estimating the 0.82 airloads. The 0.72R-nn-models 
show the correct trends as function of azimuth, but are 
vertically offset from the measured airloads. Figure 34 
shows that the nn-models, in general, provide the 
correct airloads-trends around the azimuth, but that the 
load traces are vertically offset. 

Representative airloads estimates for intermediate radial 
locations 0.93R and 0.56R are shown in Figs. 35 and 
36, respectively, for data subset #3. The O.5OR-nn- 
model in Fig. 36 utilizes only the upper surface 
pressure as an input, since the lower surface pressure 
transducer was non-operational (see Table 1). Very 
similar trends in airloads estimates are seen around the 
azimuth, but the traces are again vertically offset, 
especially at the 0.56R location (Fig. 36). Better 
agreement between the curves can be obtained by 
adjusting the nn-output node's bias term to represent the 
mean c,M2-level at the considered radial station. One 
option to determine this bias term is to perform a spline 
curve fit of the mean c,M2-values as function of radial 
location for those stations for which detailed pressure 
data are available. 
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Fig. 32. Airloads estimation at station 
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Fig. 34. Airloads estimation at station 
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Fig. 35. Airloads estimation at intermediate 
station 0.93R (a=-2', cT/a=0.089) 
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Fig. 36. Airloads estimation at intermediate 
station 0.56R (a=-2', c,/u=0.089) 
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Concluding remarks 

Detailed chordwise pressure data at seven radial stations 
were acquired for the Tilt-Rotor Aeroacoustic Model 
(TRAM) in the Duitse-Nederlandse Wind Tunnel 
( D W ) .  These pressure data were integrated to obtain 
the local blade section normal force. Pressure data at 
35%-chord were acquired at seven additional radial 
stations. Linear regression models and neural network 
modes were evaluated in their ability to estimate the 
blade section airloads from leading edge pressures and 
representative test conditions for twelve test conditions 
of the TRAM pressure database. These test conditions 
represent forward flight at p=0.15, rotor thrust 
CT/o=0.089 and 0.128, and shaft angle of attack from 
-IO"(forward) to -lO"(aft). 

The ability of regression and neural network models to 
fit the (training) database was evaluated first. 

Neural networks with two or more nodes in the hidden 
layer were seen to provide better airloads estimate than 
linear regression models. Increasing the number of 
nodes in the hidden layer tends to improve the airloads 
estimation, but incremental improvements are small 
beyond three or four nodes. 

Using upper surface pressure data only provides better 
airloads estimates than using only lower surface 
Pressure data. At the outboard radial locations, the 
alrloads estimation is greatly improved by using both 
Upper and lower pressure data. At the O.62R station the 
!nclusion of lower pressure provided only marginal 
'mProvements over the models using only upper surface 
Pressures. 

!put of azimuth angle into the neural network model 
Improved the estimation by correcting for c, leading cp 
Over a major region of the azimuth. However, 

additional work is required to ensure that the airloads at 
0" and 360" are in agreement. 

Using 2.0% chordwise station data provided better 
airloads estimates at the outboard radial location than 
using 3.5% or 6.5% chord pressures. For radial stations 
inboard of 0.82R using the 3.5% and 6.5% chordwise 
pressures provided more accurate airloads estimates than 
using 2.0% chord pressures; this relative improvement 
increased for the more inboard stations. 

The ability of a neural network to estimate the airloads 
from pressures of check-data-sets was evaluated; i.e, for 
data which were not part of the data against which the 
model was trained. The network's hidden layer 
contained four nodes with one linear and three tangent 
hyperbolic activation functions. The pressures at the 
3.5% chordwise station were used as inputs as were 
thrust, shaft angle of attack, and azimuth angle. The 
neural network model performed well in estimating 
check-data airloads if the model was trained against data 
from that same radial location. 

The neural network model performed reasonably well in 
estimating airloads at adjacent radial locations in that 
the airloads trend with azimuth was captured. However, 
the mean value of the estimate was in error, which is 
directly related to the bias term in the network's output 
layer. This term needs to be determined separately, for 
instance from fitting the mean airloads versus radial 
location curve. 

Future Work 

Azimuth was used in the present investigation as a 
neural network input in an attempt to correct for c, 
leading cp. Alternate methods for performing this 
correction will be investigated. Changes to the neural 
network models and inputs are also planned to improve 
the models capability in estimating the correct level of 
the airloads at the intermediate radial stations, where 
only pressure data at the 3.5% chordwise station are 
available. 

Neural networks will be used to fill-out the TRAM 
airloads database. The training database against which 
selected neural network models are trained will be 
expanded to include points from all 98 identified test 
conditions, for which both leading edge pressure data 
and airloads are available in the TRAM database. These 
trained networks will subsequently be used to estimate 
the airloads at test conditions for which leading edge 
pressure data are available (same radial station) and will 
also be used to estimate the airloads at the intermediate 
radial locations, having only pressure transducers at the 
3.5% chordwise station. 
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